
ECON 4925 Resource Economics

Lecture note 5B, Michael Hoel

Optimal control theory with applications for resources

and climate

This note gives a brief, non-rigorous sketch of basic optimal control the-

ory, which is a useful tool in several simple economic problems, such as

those in resource economics.

Consider the dynamic optimization problem

max

Z 1

0

e�rtf(x(t); S(t); t)dt (1)

subject to
_S(t) = g(x(t); S(t); t) (2)

S(0) = S0 historically given (3)

S(t) � 0 for all t (4)

where f and g are continuous and di¤erentiable functions (and in many

cases concave in (x; S)), and r is an exogenous positive discount rate.

The variable S(t) is a stock variable, also called a state variable, and

can only change gradually over time as given by (2). The variable x(t);

on the other hand, is a variable that the decision maker chooses at any

time. It is often called a control variable. In many economic problems

the variable x(t) will be constrained to be non-negative.

Remark 1: In the problem above there is only one control variable

and one state variable. It is straightforward to generalize to many control

and state variables, and the number of control variables need not be equal

to the number of state variables.

Remark 2: The constraint (4) is more general than it might seem, as

we often can reformulate the problem so we get this type of constraint.

Assume e.g. that the constraint was S(t) � �S:We can then reformulate

the problem by de�ning Z(t) = �S�S(t), implying that Z(t) � 0. In this
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case the dynamic equation (2) must be replaced by _Z = �g(x(t); �S �
Z(t); t) and S(t) in (1) must be replaced by �S � Z(t).

The current value Hamiltonian

The current value Hamiltonian H is de�ned as

H(x; S; �; t) = f(x; S; t) + �g(x; S; t)

where �(t) is continuous and di¤erentiable. The variable �(t) is often

called a co-state variable. This variable will be non-negative in all prob-

lems where "more of the state variable" is "good". More precisely: The

derivative of the maximized integral in (1) with respect to S0 is equal

to �(0). For this reason �(t) is also often called the shadow price of the

state variable S(t).

Conditions for an optimal solution

A solution to the problem (1)-(4) is a time path of the control vari-

able x(t) and an associated time path for the state variable S(t). For

optimal paths, there exist a di¤erentiable function �(t) and a piecewise

continuous function 
(t) such that the following equations must hold for

all t:

@H(x(t); S(t); �(t); t)

@x
= 0 (5)

_�(t) = r�(t)� @H(x(t); S(t); �(t); t)
@S

� 
(t) (6)


(t) � 0 and 
(t)S(t) = 0 (7)

Limt!1e
�rt�(t)S(t) = 0 (8)

Remark 3: If x(t) is constrained to be non-negative, (5) must be

replaced by @H
@x
� 0 and @H

@x
x(t) = 0.

Remark 4: If we know from the problem that S(t) > 0 for all t, we

can forget about 
(t), since it always will be zero.

Remark 5: Condition (8) is a transversality condition. Transversality

conditions are simple in problems with �nite horizons, but considerably
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more complicated for problems with an in�nite horizon (like our prob-

lem). The condition (8) holds for all problems where �(t) � 0.
Remark 6: If f and g are concave in (x; S) and �(t) � 0, the condi-

tions (5)-(8) are su¢ cient for an optimal solution. If we can �nd a time

path for x(t) and for S(t) satisfying (5)-(8) in this case, we thus know

that the time paths (x(t); S(t)) are optimal.

Remark 7: As mentioned in Remark 1, it is straightforward to gener-

alize to many control and state variables. If there are n state variables,

there are also n co-state variables (�1; :::�n), n Lagrangian multipliers

(
1:::
n), and n di¤erential equations of each of the types (2) and (6).

Example 1: The optimal use of a non-renewable re-

source

Consider the dynamic optimization problem

max

Z 1

0

e�rtu((x(t))dt

subject to
_S(t) = �x(t)

S(0) = S0 historically given initial resource stock

x(t)� 0 for all t
S(t)� 0 for all t

where u(0) = 0, u0 > 0, u00 < 0 and u0(0) = b. The Hamiltonian in this

case is

H(x; S; �) = u(x)� �x

and the conditions (5)-(8) are now

@H

@x
= u0(x(t))� �(t) � 0 and [u0(x(t))� �(t)]x(t) = 0 (9)

_�(t) = r�(t)� 
(t) (10)
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(t) � 0 and 
(t)S(t) = 0 (11)

Limt!1e
�rt�(t)S(t) = 0 (12)

As long as S(t) > 0 we have 
(t) = 0 implying from (10) that

_�(t) = r�(t) or �(t) = �(0)ert (13)

It follows from (9) and (13) that _x(t) � 0. For x(t) > 0 we have

u0(x(t) = �(0)ert

giving a declining x(t). At some time T , �(0)erT = b, giving x(T ) = 0

since u0(0) = b. The resource stock must reach 0 at T : S(T ) < 0 would

violate the condition S(t) � 0 for all t, while S(T ) > 0 would violate

the transversality condition (12).

To conclude: Optimal resource extraction declines gradually over

time, making the marginal utility u0 rise over time at the rate r. Extrac-

tion eventually reaches zero; this occurs simultaneously with the resource

stock being completely depleted.

Example 2: Optimal climate policy for a given car-

bon budget

Same as above, but let u(x) be bene�t of emitting carbon (x), i.e. of

using fossil fuels. Moreover, let S0 be the total amount of carbon emis-

sions in the future (from date t = 0) that are consistent with a political

goal of total temperature increase (see Allen et. al , 2009). The model

describes how u0 must develop over time. Users of carbon set u0 equal

to the carbon tax. Hence we can conclude that the optimal carbon tax

must rise at interest rate. Moreover, the level of this carbon tax is higher

the lower is S0, i.e. the lower temperature increase we accept.

Reference:

Allen et. al 2009:

Warming caused by cumulative carbon emissions towards the tril-

lionth tonne
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http://www.nature.com/nature/journal/v458/n7242/full/nature08019.html

Quotation:

the relationship between cumulative emissions and peak warming is

remarkably insensitive to the emission pathway (timing of emissions or

peak emission rate). Hence policy targets based on limiting cumulative

emissions of carbon dioxide are likely to be more robust to scienti�c

uncertainty than emission-rate or concentration targets. Total anthro-

pogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of

CO2), about half of which has already been emitted since industrialization

began, results in a most likely peak carbon-dioxide induced warming of

2 oC above pre-industrial temperatures, with a 5�95% con�dence interval

of 1.3�3.9 0C.
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